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1. Models in Vision

In spite of the large number of intelligent, energetic people engaged in the study of vision, it often
seems that we advance our understanding of this process at an excruciatingly slow pace. Why is this
so? T believe that it is the fault of our models. We have been seduced by the simplicity of explana-
tion available in the physical scicnces, and try to describe the vast complexity of vision with models
that would not do justice to a sphere rolling down an inclined planc.

Today 1 will describe a model which in a small way attempts to remedy this situation., The
principles that underly it are simple, but it attempts to represent more adequatcely the inherent com-
plexity of vision. Before describing this model in detail, [ will emphasize its unusual aspects, and
some of the benefits we may gain from this departure,

First, the model is explicit. No "channels”, "mechanisms” or other ill-defined entitics appear.
Put another way, the model is computable. It is well cnough defined to permit numerical predic-
tions to be made for a given experimental situation. Sccond, the model adequately represents all the
dimensions thal are pertinent to the experimental domain. In the case [ consider, these are the two
spatial dimensions of a monochromatic, stationary image. Although this is an inherently two-
dimensional (2D) situation, visual models in this context have almost invariably been one-
dimensional (1D). "Third, the model is general within its specificd domain. The same model can be
used to predict performance in a wide varicty of different visual tasks on a wide varicty ol images.
This contrasts with most visual models, which only attempt to explain the data from a Very 1es-
tricted domain. Fourth, the model draws many of its parameters and assumptions directly from phy-
siological results.  While this has long been an ambition of psychophysical theorics, it has rarely
been realized. Finally, the model attributes intelligence to the observer. It is perhaps understand-
able that this has not been done in the past, since psychophysicists are most often their own
observers. 'The model assumes that the observer will make optimal use of the available information.
‘This assumption is of course a commonplace in signal detection theory [10], but rarcly appears in
explicitly visual models.

The price of these amendments is a model that is somewhat more complex, requiring more
assumptions and parameters than average. The benelits, however. are worth it. It provides a
mechanism with which to integrate information within the field. Sitce the model can be applicd in
diverse contexts, it provides a common repository for results from many different sources. The
model also insures the consistency of interpretation from one experiment to the next. Too ofien a
model is constructed in one context that is quite obviously incompatible with data from another con-
text. The model also provides a natural path along which to specify in cver greater detail the rela-
tion between our visual experience and the physiological mechanisins of the visual brain. Finally, to
the extent that the modet is successful, it will permit us to turn our attention from the carly,
image-driven stages of vision to the more complex, cognitive processing that must subsequently
oceur.

It should be clear that the argument 1 have advanced is on behalf of any model that meets the
criteria of explicitness, adequacy, and generality noted above. The model T will describe is just a
candidate, and a green one at that.
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2. Domain of the model

What is the domain of my model? It is intended to account for psychophysical responses of an
accommodated, fixating human obscrver viewing binocularly a 2D stationary achromatic image at a
fixed adapting level of 340 cd m™. Specifically, 1 have excluded both color, sterco, and dynamic
imagery since it scems likely that they are analyzed independently of spatial luminance contrast.

3. General properties of the model

Since this model is a first approximation whose paramcters and structural details arc quite open to
improvement, it is worth giving a bricf overview of its essential structure. The heart of the model is
a sct of feature sensors, which perform different measurements vpon the input image. The sct of
measurements taken from a particutar image make up a feature vecior. 'The sensors are perturbed
by noise, so that from presentation to presentation, the same image will give rise to somewhat
different feature vectors. Following cach trial of an cexperiment, the obscrver processes the feature
vector in an optimal way to arrive at a psychophysical decision.

The model thus divides naturally into two parts: generating the feature vector, and processing
the feature vector,

4. Generating the Feature Vector

Bach feature sensor is defined by a spatial weighting function, which is a model or template of the
feature to be sensed. 'The measurement is performed by cross-correlating the contrast image and
the weighting function. ‘The features used in the model are typificd by the pattern in Fig. 1(top). It
is the product of a 21) sinusoid and a 21) Gaussian. lts various parameters, which may differ from
sensor to sensor, are: spatial frequency (the frequency orthogonal to the bars), the orientation (the
angle of the orthogonal to the bars), the width (the size at half height of (he Gaussian defined
orthogonal to the bars), the keight (the comparable measure parallel to the bars), and the phase of
the sinusoid (defined relative to the center of the Gaussian). Finally, cach function is located at a
particular point in the visual ficld. Of these seven parameters, we shail see that two can be defined
in terms of the others, leaving five feature dimensions that may vary from sensor Lo sensor.

This general form of weighting function closely resembles the receptive field profiles of sim-
ple cells, the most numerous class of visual neurons in the striate cortex of cat and monkey [3,13].
Most cortical cells respond only over a modest region of space, a modest band of spatial frequencies,
and a modest range of orientations [3.4,15,24]. Psychophysical data are also consistent with a
moderate selectivity in space, spatial frequency and orientation [ 1,29,32]. "The Fourier transform of
the feature is shown in IFig.1(bottom). where it can be seen that the sensor also responds only over
a small band of spatial frequencies and orientations.

This sort of function is often named after GABOR, who showed that (in the 11 casc) it
minimizes the width in both space and frequency [8]. DAUGMAN has noted the virtues of the 2D
version of the Gabor function [2].

4.1. Width and Height

The data of DEVALOIS er al. [3] indicate simple cortical cell receptive fields tend to be slightly
taller than they are wide, but including this subtlety did not scem worth the extra computational
effort. Accordingly, 1 have cquated height and width, so the supports of both pattern and transform
are circular. 'T'his also allows us to specify the width of a pattern, or of its transform, by a single
number: the diameter at half height. With this amendment, the weighting function for the sensor
can be writlen

PR RN NN . .
wx,p) = e 4207 3D i f(xcosf 1 ysing) 1 g (1)
where £ is the spatial frequency, 6 is the orientation, w is the width, and g is the phase.
The width of a feature and the bandwidth of its transform arc inversely related

(b:mdvyidlh = 41In2/(wwidth)). 1 have sct the width of cach sensor to about 1.324 cycles of the
sinusoid. This means that sensor bandwidth is proportional to sensor spatial frequency (bandwidth
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Fig.1, Top: an example of a spatial feature consisting of the product of a sinusoid and a Gaussian,
The two axes are horizontal and vertical visual field position. Width of the feature is 1,324 cyeles of
the sinusoid. The orientation is 22.5 degrees, and the phase is 0. Bottom: the Fourier transform of
the feature. The axes are horizontal and vertical spatial frequency. “Top and bottom fipures are to
scale when 1 degree on the top scale equals | eyele/degree on the bottom scale

= 2/3 frequency), or, in logarithmic terms, that cach sensor has a bandwidth of one octave. It also
means that a low frequency sensor will be large, and a high frequency sensor will be small,

Spatial frequency bandwidths for simple striate cells rise approximately in proportion to fre-
quency. Bandwidths appear to range from one hall to 2.5 octaves, but one octave bandwidths
comprise a large fraction of those recorded [3,15]. Psychophysical data do not lead so directly to
estimates of bandwidth, but they are consistent with a proportionality between frequency and
bandwidth, and with log bandwidths of about one octave [29,30,31].
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Fig.2.The basic sct of sensors. ‘The sensor frequencies range from 0.25 to 32 cycles/degree in oc-
tave steps. Bach sensor has a bandwidth of one octave (width = 1.324 cycles) d

4.2. Frequency

Since cach sensor covers only one octave of frequency, we need a number of sensors to cover the
full range of frequency which the human can sense (about 0 to 60 cycles/degree). The number
required will also depend upon the density of the sensors in the frequency domain, This cannot be
less than about one sensor per bandwidth, or information in the image will be lost, and scnsitivity
will show dips between sensors [29]. In the model I have tried to include as few sensors as possible,
50 just one sensor per bandwidth has been used. This yields a sct of eight basic sensors, whose fre-
quencies range from 0.25 to 32 cycles/degree in octave steps. ‘This basic set is shown in Fig.2. The
largest sensor, a small part of which is barely visible in the upper left corner, is 128 times larger
than the smallest. 'The sensors have been arranged in a spiral so as to fit in a square, but should all
be considered to lie at the center of the visual field, This basic set will be present only at this point;
the sensors at other locations will be generated by a rule described below.
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Fig.3. Fourier transforms of the set of basic sensors. Of the two Gaussians symmetrically placed
about the origin, only one is shown. Axes arc horizontal and vertical spatial frequency

The transforms of this basic set are shown in Fig.3 For clarity, only one of the two parts of
cach spectrum is shown. The positions of the spectra are correctly placed relative to the correspond-
ing features in Fig.2, Note that the smallest feature corresponds to the largest transform. For clar-
ity I have shown features with different orientations, If all the features were similarly oriented, all
the transforms would lie at a single angle, and would overlap considerably. This illustrates that all
of frequency space is covered.

4.3. Spatial Sampling

To preserve the information in the image the 1D spatial density of the sensors of a particular fre-
quency must be at least twice the frequency extent of the sensor. This extent is not well defined for

104



Fig.4. The five sensor orientations. They range from 0 to 144 degrees in steps of 36 degrees

a Gaussian spectrum, but if we used the bandwidth, the required sample (requency would be 4/3 the
sensor frequency. | have used the more conservative factor of 1.8, Thus for the basic set of eight
frequencies at the fovea, sampling intervals range from 0.0174 degrees for the highest frequency to
2.22 degrees for the lowest,

4.4, Orientation

The orientation bandwidth of a sensor (as measured with the spatial frequency to which the sensor
is tuned) is completely determined by the spatial frequency bandwidth. For our one octave spatial
frequency bandwidth, the orientation bandwidth is about 38 degrees. This can be scen in Fig.3,
where the orientation bandwidth will be given by the range of angles that intersect the spectrum at
half-height or above. 'I'his 38 degree figure agrees well with the 40 degrees reported by DEVALOIS
et al. [4] as the median orientation bandwidth for simple cells in monkey striate cortex. There is a
great deal of psychophysical data related to orientation tuning, but as yet there has been no convine-
ing route from the data to an estimate of the orientation bandwidths of underlying sensors.

105



Fig.5. Transforms of the five sensor orientations. Fach Gaussian has been truncated at one width for
clarity. "T'he orientation bandwidth of each sensor is about 38 degrees

In specifying sensor density in the orientation domain | have again followed the rule of about
one sensor per bandwidth. This yields the set of five orientations illustrated in Fig.4, The
transforms of these features are shown in Fig.5. Successive transforms are overlaid, and ecach is
truncated at about one width, illustrating the degree of sensor overlap in the domain of orientation.

4.5. Phase

I'include sensors of two phases, 0 and 90 degrees. At least two phases are required to preserve the
odd and even information in the image. Beyond this, POLLEN and RONNER [19] have found that
adjacent simple cells in cat striate cortex usually share a common spatial frequency and orientation,
but differ in phasc by 90 degrees. Bxisting psychophysical data do not lead dircetly to any strong
hypothesis regarding sensor phase,
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Iiig.6. The sampling array for a basic frequency of 1 cycle/degree. The two axes show degrees from
the fovea. Each circle is about 275 the width of the corresponding sensor

4.6. Spatial Anisoplanatism

Perhaps the greatest difficulty in 21> modeling of human spatial vision are the large and complex
variations in spatial processing that occur with distance from the center of the visual ficld. In gen-
eral, contrast sensitivity declines with cccentricity, and does so more rapidly for high spatiat frequen-
cies than for low | 11,20,27]. However it has recently been suggested that spatial processing in all
portions of the visual ficld is identical save for a change in the 2D spaiial scale [5,11,22]. "T'his
would be the case if ganglion cells changed in size with cecentricity, but all subsequent processing
were homogencous with respect to eccentricity. Though the cvidence for this hypothesis is not
overwhelming, it is too great a simplification to be resisted. Accordingly 1 have taken the spatial
scale s to be given by the scaling function

s =1 4 ke (2)

where & is a constant and e is cceentricity in degrees. For my own eyes, k is about 0.4, 'This agrees
reasonably well with the estimates of other authors, and with the changes in ganglion cell density
and cortical magnification factor with cccentricity [5,21]. 1t should be emphasized that this function
is intended only as a st approximation,

This scaling function has been used to scale the size, frequency, and spatial density of the
sensors at cach cceentricity. Thus if a sensor at the fovea has a basic frequency of £ width w, and
1D density . the related sensor at cecentricity e will have frequency /s, width ws, and density
d/s. 'These relationships are shown in g6, where | have drawn a sampling array for a basic fre-
queney of 1 eyclezdegree. Fach circle in the figure is about 275 the width of the corresponding sen-
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sor, showing the considerable degree of spatial overlap among sensors of a common frequency.
Note that as cccentricity increases, sensor frequency and spatial density are scaled by the same
amount, so that the sampling requirements continue to be met. 'The sct of all sensors generated in
this way from a given basic frequency may be considered a family. This is the closest we get to a
“spatial frequency channel” of traditional visual theory.

The actual positions of individual sensors have been determined by finding, for cach family at
cach cceentricity, that regular polygon centered upon the fovea whose sides are about cqual in
length o the difference between the present and next lesser cecentricity. This algorithm is used
only as a simple way of gencrating sensor locations with the appropriate propertics.

4.7. Scnsor Gain

It is well known that contrast sensitivity depends upon spatial frequency. How do we incorporate
this dependence into the model?” | begin by defining sensor gain as the response to a matched target
at unit contrast.  If sensor gain at the fovea is x(f), where £ is the basic frequency, then spatial
processing will be homogencous irrespective of cccentricity only if sensor gain is adjusted to take
into account the larger size of cccentric sensors. This can be accomplished by multiplying cach
weighting function by x(/) 16 m2/(w? @), where w is the actual width and £ is the basic frequency
of the family to which the sensor belongs. 'This scaling of gain would result naturally if cach sensor
received contributions from an equal number of receptors, and this would be likely if the receptor
density followed the same scaling function given by (2).

The actual functional form for x(f) is not simple to estimate, since it is not given directly
by any simple empirical mecasurcment. A first approximation, indirectly estimated from contrast
sensitivity to one octave bandwidth grating patches, is shown in lig.7.

o
© 4
=
©
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0.25 32 llig.7. Sensor gain, x(f)
c/deg

4.8. Computing the Feature Vector

The preceding assumptions permit us to compute a feature vector, z, cach entry of which is the
response of a single feature sensor. ‘Fhe many cross-correlations involved are generally more casily
computed by way of well-known detours through the frequency domain.  Further savings can be
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gained by disregarding scnsors that are well outside the space or frequency support of the image.
Even so, the amount of computation required to obtain the feature vector may be formidable, espe-
cially for large stimuli with high frequency content. Fortunately the sensors and all the iimages con-
sidered here have Fourier transforms that can be obtained analytically, so that finite transtorms nced
not be resorted to.

5. Processing the Feature Vector

The psychological literature is filled with suggestions as to how an obscrver might make use of the
feature vector to detect and discriminate among patterns. Once might look for the largest single
entry, look for the centroid of some distribution of vector entrics, check whether at feast one entry
is larger than a criterion value, and so on. But these procedures are largely ad hoce, and rarcly gen-
cralize much beyond the experimental context they are designed to explain. For example, looking
for the largest single entry might work at threshold but is not a reasonable rule above threshold.
Also, these procedures are not derived from basic principles but rather appeal to the intuition,
sometimes not very forcefully.

In contrast, the statistical thcory of pattern classification provides a logical basis  for
constructing optimal procedures with which to analyze the feature vector [6,14]. Turthermore, pat-
tern classification theory is general, and could in principle be applied to most tasks the human
observer confronts in the psychophysical lab, if not in the world at large.

5.1. The Optimal Bayesian Classifier

et me illustratc how I apply this thcory to the feature vector consteucted a moment ago.  First |
assume that cach sensor is perturbed by zero mean, unit variance Gaussian noise. The feature vec-
tor then has a multivariatc normal density. 1 further assume that the covariance matrix of this den-
sity is the identity matrix, which mcans that the sensors are statistically independent.

The job of the classifier is to examine the feature vector and decide which of several possible
images was in fact presented. FEach of the possible images is associated with a mean vector my.
Presentation of one of the images gives rise to a feature vector z. 1f we also know the prior proba-
bility of cach alternative, Bayes' rule allows us to usc the feature vector to calculate the posterior
probability of cach of the alternatives. In the cases | will consider, all alternatives have cqual priors.
A reasonable, and in fact optimal rule is to choose the image with highest posterior probability.
Since we care only which has highest probability, it is sufficient to calculate for cach alternative any
quantity that is monotonic with posterior probability. Such functions on the feature vector are catled
discriminants.

In the case [ have developed so far, a sct of optimal discriminants are

d(z) = z-m)" (z—my) (3)

il

n
=Sz —my)’ ,
=l

where the superscript 7 denotes the transpose of a matrix.  Note that if 2 has » clements, then it
can be considered a point in n-dimensional space.  Likewise for cach of the mean vectors my . This
form of discriminant tells us to pick the alternative whose mean vector is closest to z in this space.
For this rcason this is often called a minimum distunce classificr.

5.2. Prior Information

One objection to this scheme is that it assumes that the observer has perfect prior information
regarding cach mcan vector my. Since this vector is obtained through experience, and cach experi-
ence is subject to variability, this assumption is unrcalistic. impirical data also clearly show that the
observer is less than optimal, as though he were uncertain regarding my [7,16,25]. Fortunately, for
the detection task 1 will consider, an approximation is available for a more realistic uncertain
observer [18]. In the case of discrimination, we must be content for the moment to examine the
behavior of the ideal. This is unfortunate, since to the extent that the sensors preserve the informa-
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2.0 Fig.8. Summation between two different spatial frequencies.  Predictions

of the model with 1.0 octave and 0.8 octave bandwidths are shown,
Data are from [29]
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tion in the image, discrimination performance tells us more about the orthogonality of the alterna-
tive images than about the propertics of the sensors.

5.3. Detection

The ability of an observer to detect a pattern is often measured by a two-interval forced-choice
(211°C) method, in which the observer must judge which of two time intervals contained a signal.
This may be viewed as a discrimination between two hmages: the test image and a null image.  From
a number of trials we can determine the proportion correct, or ', defined here as 2 times the nor-
mal deviate of the proportion correct. Since there are only two alternatives (image in first interval
of in sccond interval), we can difference the two discriminants and use the sign of the result to
choosc an alternative. "This quantity is normally distributed with a mean cqual to the squared length
of the mean vector, and a variance of twice the squared length. From this it is casy to show that for
any given patiern,

d' = vm"m (4)
n %
=13 my ] .

As noted above, this prediction assumes an observer with perfect prior information.  For an

uncertain observer, performance can be approximated by specifying that for all stimuli at some fixed
’

d’,

1 = [ im,/;]“ﬂ s

where 8 is a constant of about 3.5 [18]. This approximation has been used in the following predic-
tions of detection performance.

The model gives a good account of sensitivity to a wide varicty of different spatial targets.
For example, the model does a reasonable job of predicting the contrast sensitivity function at vari-
ous cceentricities, and the effects of size of a grating pattern upon sensitivity.  Among the carliest
experiments to suggest that visual mechanisms were sclective for spatial frequency were those which
measured sensitivity to mixtures of two frequencies [9,23]. Data from a more recent version of this
experiment are shown in Fig.8 [29]. Each point shows the sensitivity to a mixture of two frequen-
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Fig.9. Discrimination between grating patches of different frequencies (circles) and Gaussian bars of
different widths (squares). Curves arc predictions of the model. Data are from [31] and 128]

cies, relative to the sensitivity to cither frequency alone.  If the two frequencics add lincarly, we get
a ratio of two, il they do not add at all, we get a ratio of 1. The data show a decline in summation
as the two frequencics move farther apart. The prediction of the model is shown by the upper
curve. It does not agree precisely with the data, but given that most sources of crror in the data will
tend to lower the ratio it does not do a bad job. I have also shown the prediction in the case of 0.8
octave bandwidth sensors. The fit is better, and this amendment may have to be resorted o in the
future.

5.4. Discrimination

A particulatly sensitive way of measuring discrimination performance is by a two-by-two forced
choice (2X21C) method [17,26,31). As in the 211°C method, on cach trial the observer is presented
with an image in just onc of two time intervals. But in this case the image is sclected at random
from a sct of two. The obscrver must choose both the interval containing the image, and which
image it was. The advantage of this technique is that it mecasures detection and discrimination con-
currently, so the two sorts of performance can be compared.

In the case of 2X21C the observer must choose among four alternatives, so we must deter-
mine four discriminants. I we call the feature vector from the first interval 7y and that from the
second interval zy, and the mean feature vectors for the two images a and b, then these discrim-
inants arc

dig = 2{a dyy = 1 a (5)
dyp = 2'b dyp = 73 b

where dy, for example is the discriminant for image b in the second interval. lere we cannot
reduce these to a single function of z as was possible in the case of 21MC. Furthermore, although
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cach discriminant is again normally distributed, the four are not independent, so we cannot casily
derive the probability with which any one is the largest and must resort to Monte-Carlo techniques.

5.4.1. Spatial KFrequency

Since our maodel obscrver discriminates among images on the basis of certain features, it is interest-
ing to ask how well the human observer discriminates between two images that are members of the
feature sct. Fig.9 shows some data collected with a 2X21C method in which the two images to be
discriminated were Gaussian-windowed sinusoids, like the features of the model [31]. ‘The ordinate
plots the ratio of «" for discrimination and detection, which is a measure of discrimination perfor-
mance relative to detection. ‘This method of plotting 2X21°C data is duc to THOMAS, who has
done much of the pioncering work in this arca. The ratio riscs rapidly as the two frequencies are
moved farther apart, so that when they differ by about an octave, we discriminate between them as
well as we deteet cither one. ‘['he model’s performance, shown by the solid line, is better than the
human observer. Introduction of uncertainty into the model would reduce this discrepancy. Notice
that, as a rule of thumb, the model predicts a ratio of onc when the two patterns differ by about one
bandwidth.

5.4.2. Bar Width

What if we repeat the experiment with images which do not resemble the sensor features? The
squarc symbols in Fig.9 are comparable data for discriminations between Gaussian bars: patterns
with a Gaussian profile in both horizontal and vertical dimensions and with height always at lcast
twice the width [28]. Discrimination performance is vastly poorer, so that a difference of about 4
octaves is required before discrimination is as good as detection. 'This poorer performance is very
nicely described by the model, whose predictions are shown by the rightmost line.

5.4.3. Orientation

The last sct of data 1 will show you were collected by THOMAS and GILLE [26]. They used a
2X21FC method to discriminate between gratings of different orientations. ‘T'he gratings were large,
extending 15 cycles in cach direction. "Their data are shown jin Fig.10. Discrimination improves
rapidly as the difference in orientation increases, and is almost as good as detection when the
difference is 10 degrees. The model’s simulated data are shown by the leftmost solid line. The
agreement is quite good; perhaps too good considering uncertainty has not been included.

Large grating

Smali grating

&

Ratio

0.0 L7 4 , ; ey
0 20 40 60 80

Orientation Difference (degrees)

Fig.10. Discrimination between large gratings of different orientations (circles). Data are from [26].
Curves show the predictions of the model for large and small gratings
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On the basis of a 11D model, THOMAS and GILLE cstimated mechanism  orientation
bandwidths of 10.5 to 20.5 degrees, depending on obscrver. These are 2 to 4 times narrower than
the sensor bandwidths used in the prediction in Fig.10. Thesc authors acknowledged that their esti-
mates were much narrower than bandwidths of cortical cells, and speculated that "psychophysically
defined channels represent physiological mechanisms other than single cortical cells”

How can the present model with 38 degree bandwidths perform as well as the THOMAS and
GILLE model with bandwidths about 3 times narrower? The most likely answer is that the present
model is 2D, and can makc intelligent usc of the pattern of activity across a large number of spa-
tially distributed sensors. When the stimulus is confined to a small arca, performance deteriorates

markedly, as shown by the rightmost curve in Fig.10  (though much of this is due to the broadened
orientation bandwidth of the stimulus itself).

These obscervations illustrate an important point: scnsor propertics cannot be cstimated
without an cxplicit, computable, 21D model of the sensors and of their distribution over the visual
field. The model must also allow the observer to make intelligent use of the sensor outputs. This
argument applies to any cffort to derive sensor paramcters from psychophysical data, that is, to
almost all psychophysical rescarch.
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